Fintokeiã§äœ¿ãããšãªãªããæ³¢åã€ã³ãžã±ãŒã¿ãŒ3éžïœãªã¢ã«ãã¬ãŒãã§ã®äœ¿ãæ¹ã解説ïŒ

ãšãªãªããæ³¢åã¯ãçžå Žã®äŸ¡æ Œå€åãäžå®ã®æ³¢ã®ãã¿ãŒã³ãšããŠæããŠå€åããäºæž¬ããçžå Žåæçè«ãšããŠå€ãã®ãã¬ãŒããŒã«ç¥ãããŠããŸãã
ãã©ã®ãã¬ã³ãããšãªãªããæ³¢åã®ã©ã®æ³¢ã«è©²åœããã®ãïŒã
ããã®æ³¢ã®ã«ãŠã³ãã¯æ¬åœã«ãã£ãŠããã®ãïŒã
ãªã¢ã«ã¿ã€ã ã§ãšãªãªããæ³¢åã®æ³¢ãæ£ããæ°ããããšã¯é£ãããäžèšã®ãããªçåãæã£ãããšãããæ¹ãå€ãã®ã§ã¯ãªãã§ããããïŒ
ãšãªãªããæ³¢åã§ãæ©ã¿ã®æ¹ã«åããŠããã®ãããšãªãªããæ³¢åã«é¢é£ããã€ã³ãžã±ãŒã¿ãŒã®æŽ»çšã§ãã
ãããŸã§ç®å®ã§ã¯ãããã®ã®ãã€ã³ãžã±ãŒã¿ã䜿ãã°ãšãªãªããæ³¢åã®æ³¢ãèªåã§ã«ãŠã³ãããŠãããã®ã§æ³¢ã®æ°ãæ¹ã«é¢ããæ©ã¿ã軜æžã§ããŸãã
ãã®èšäºã§ã¯ããšãªãªããæ³¢åã®åºæ¬æŠå¿µãããæ³¢ã®ã«ãŠã³ãã®é£ããããããŠãã®èª²é¡ã解決ããã€ã³ãžã±ãŒã¿ãŒã®æŽ»ç𿹿³ãŸã§ã以äžã®é ç®ã§è©³ãã解説ããŸãã
- ãšãªãªããæ³¢åãšã¯ïŒ
- ãšãªãªããæ³¢åãæ£ããã«ãŠã³ãããããšã¯é£ãã
- ã€ã³ãžã±ãŒã¿ãŒã§ãšãªãªããæ³¢åã®ã«ãŠã³ãåé¡ã解決
- ãšãªãªããæ³¢åã®ã€ã³ãžã±ãŒã¿ãŒã®ã«ãŠã³ãã¯ä¿¡é Œã§ããã®ãïŒ
- ãšãªãªããæ³¢åã®ã€ã³ãžã±ãŒã¿ãŒããã¬ãŒãã§æŽ»çšããæ¹æ³
- ãšãªãªããæ³¢åã䜿ã£ãŠFintokeiã«ææŠãã
- ãŸãšã
ãšãªãªããæ³¢åãšã¯ïŒ
ãšãªãªããæ³¢åãšã¯ãçžå Žã§çŸããäŸ¡æ Œå€åããã¿ãŒã³åãããäŸ¡æ Œã®æ³¢ãã®ãµã€ã¯ã«ãšããŠæããŠãä»åŸã®çžå Žååãåæããçè«ã§ãã
ãšãªãªããæ³¢åã§ã¯ãçžå Žã®äŸ¡æ Œååã¯ã5ã€ã®æšé²æ³¢ãš3ã€ã®ä¿®æ£æ³¢ãåèš8ã€ã®æ³¢ã§æ§æããããšããããšãåºæ¬çè«ãšããŠæå±ãããŠããŸãã
ããšãã°äžæãã¬ã³ãã®å Žåãäžæäžã«çŸãã5ã€ã®æšé²æ³¢ãšãäžæãã¬ã³ãã®çµäºã瀺ã3ã€ã®ä¿®æ£æ³¢ãçŸããããšã§ã1ãµã€ã¯ã«ã®äžæãã¬ã³ããçµäºããŸãã
ããã«æšé²æ³¢ã«ã¯ã以äžã®ãããªååãããããã®ååãæºããããšã§ããšãªãªããæ³¢åã®æ³¢ãšããŠã«ãŠã³ãããããŸãã
- ãšãªãªããæ³¢åã®ç¬¬1æ³¢ã¯ç¬¬3æ³¢ããé·ããªãããšããªã
- 第1æ³¢ã®å®å€ã¯ç¬¬2æ³¢ã®å®å€ãå¿ ãäžåã
- 第1æ³¢ã®é«å€ã¯ç¬¬4æ³¢ã®å®å€ãå¿ ãäžåã
ãšãªãªããæ³¢åãæ£ããã«ãŠã³ãããããšã¯é£ãã
äŸ¡æ Œã®æ³¢ãæ£ããã«ãŠã³ãã§ãããã©ãããããšãªãªããæ³¢åã䜿ãããªãããã©ããã倧ããå·Šå³ããŸãã
ãããå®éã®çžå Žã§ã¯æ£ããæ³¢ãã«ãŠã³ãããããšã¯é£ããããšãªãªããæ³¢åã¯äœ¿ããªãçžå Žåæçè«ã ãšèšãããããšãå°ãªããããŸããã
ã«ãŠã³ããé£ãã代衚äŸãšããŠæããããã®ãã第1æ³¢ã§ãã
以äžã®ãã£ãŒããèŠãŠã¿ããšãå®å€ããäžæçã«äžæããéšåïŒé»è²æ ïŒããŸãã¯çžå ŽäŸ¡æ Œã倧ããäžæããéšåïŒèµ€è²æ ïŒã®ã©ã¡ãã1æ³¢ãšããŠæãããè¿·ãæ¹ãããã®ã§ã¯ãªãã§ããããïŒ
ããã«é²ãã ãã£ãŒããèŠããšãçµæçã«é»è²æ ã®ã«ãŠã³ããæ£ããã£ãããšãããããŸãã
ãŸã以äžã®ãããªæŽèœçžå Žã§ã¯ããã€ç¬¬1æ³¢ãçºçããŠãäžæãã¬ã³ãã«è»¢æããã®ãäºæž¬ããã®ã¯é£ããã®ã§ãã
ãã®ããã«ããªã¢ã«ã¿ã€ã ã§æ³¢ãã«ãŠã³ãããããšã¯æå€ãšé£ããããšãªãªããæ³¢åã䜿ãããªãããã«ã¯ãã¬ãŒãã¹ãã«ãçµéšãããçšåºŠå¿ èŠã«ãªãã®ã§ãã
ãšãªãªããæ³¢åã¯äœ¿ããªãã®ãã«ã€ããŠã¯ã以äžã®èšäºã§è©³ãã解説ããŠããã®ã§ãã²åèã«ããŠãã ããã
â«ãšãªãªããæ³¢åã¯æ¬åœã«äœ¿ããªãïŒ6ã€ã®çç±ãšå¯Ÿçæ¹æ³ã培åºè§£èª¬
ã€ã³ãžã±ãŒã¿ãŒã§ãšãªãªããæ³¢åã®ã«ãŠã³ãåé¡ã解決
æ³¢åã®ã«ãŠã³ãã«ã¯å°ããã¬ãŒãã¹ãã«ãçµéšãå¿ èŠãšãªããšãªãªããæ³¢åã§ãããã€ã³ãžã±ãŒã¿ãŒã䜿ãã°ããã®åé¡ã解決ã§ããå¯èœæ§ããããŸãã
以äžã®ç»åã¯ããã£ãŒãã«ãšãªãªããæ³¢åã«ãããæ³¢ãèªåã§ã«ãŠã³ãããŠãããã€ã³ãžã±ãŒã¿ãŒãé©çšããã ãã®ãã®ã§ãã
æ³¢ãèªåçã«ã«ãŠã³ããããã®ã§ããã©ã®æ³¢ã第1æ³¢åãªã®ãïŒããªã©ãšæ©ãããšããããŸããã
ãšãªãªããæ³¢åã«æ £ããŠããããæ³¢ã®ã«ãŠã³ãã«èªä¿¡ããªãå Žåã¯ãç©æ¥µçã«ã€ã³ãžã±ãŒã¿ãŒãå°å ¥ããŠãããšè¯ãã§ãããã
Fintokeiã§äœ¿ãããšãªãªããæ³¢åé¢é£ã®ã€ã³ãžã±ãŒã¿ãŒ
Fintokeiã®ãã¬ãŒãã£ã³ã°ãã©ãããã©ãŒã ã§äœ¿ãããšãªãªããæ³¢åé¢é£ã®ã€ã³ãžã±ãŒã¿ãŒãšããŠã以äžã®3ã€ã解説ããŸãã
- ãã¬ãŒãã£ã³ã°ãã©ãããã©ãŒã ã«æšæºã§æèŒãããŠãããZigZagã
- èªåã§æ³¢ãã«ãŠã³ãããŠããããElliot-Waveã
- ã«ãŠã³ããšãã£ããããã衚瀺ãããElliot-Fibonacciã
â»ãªããElliot-WaveãšElliot-Fibonacciã¯FintokeiãæäŸããŠããã€ã³ãžã±ãŒã¿ãŒã§ã¯ãªãã®ã§ãå¥éå€éšããããŠã³ããŒãããå¿ èŠããããŸãã
ãã¬ãŒãã£ã³ã°ãã©ãããã©ãŒã ã«æšæºã§æèŒãããŠãããZigZagã
ZigZagïŒãžã°ã¶ã°ïŒãšã¯ããã£ãŒãäžã®ç®ç«ã£ãå®å€ãšé«å€ãçµãã§ãçžå Žã®æµããããžã°ã¶ã°ãã«è¡šç€ºããã€ã³ãžã±ãŒã¿ãŒã§ãã
ZigZagã§ã¯ãå°ããªå€åããç¡èŠããŠå€§ããªæµãã®ã¿ãã©ã€ã³ã§çµãã§ãããã®ã§ããšãªãªããæ³¢åã圢æãã8ã€ã®æ³¢ãèŠèŠçã«ææ¡ããããã«é©ããŠããŸãã
ãŸãããšãªãªããæ³¢åé¢é£ã®ããŸããŸãªã€ã³ãžã±ãŒã¿ãŒã®åºç€ã«ããªã£ãŠããã€ã³ãžã±ãŒã¿ãŒãªã®ã§ä¿¡é Œæ§ã¯é«ãã§ãã
ããããæ³¢ãå®éã«ã«ãŠã³ããããããã§ã¯ãªãã®ã§ããšãªãªããæ³¢åã®ããã«äœ¿ããšãªããšãããçšåºŠã®ãã¬ãŒãã¹ãã«ã¯å¿ èŠã«ãªããŸãã
ã«ãŠã³ããèªååããããšããæ¹ã¯ã次ã«ç޹ä»ãã2ã€ã®ã€ã³ãžã±ãŒã¿ãŒããéžãã§ã¿ããšè¯ãã§ãããã
ZigZagã®äœ¿ãæ¹ã«ã€ããŠã¯ã以äžã®èšäºã§è©³ãã解説ããŠããã®ã§ãã²åèã«ããŠãã ããã
èªåã§æ³¢ãã«ãŠã³ãããŠããããElliot-Waveã
Elliot-Waveã¯ããšãªãªããæ³¢åã®æ³¢ãèªåã§ã«ãŠã³ãããŠãããæãã¹ã¿ã³ããŒããªã€ã³ãžã±ãŒã¿ãŒã§ãã
ZigZagãããŒã¹ã«äœãããŠãããæšé²æ³¢ã§ãã第1æ³¢ã第5æ³¢ãŸã§ãèªåã§ã«ãŠã³ãããŠãããŸãã
ã€ã³ãžã±ãŒã¿ãŒã®ãã©ã¡ãŒã¿ãŒã¯ZigZagãšã»ãšãã©åããªã®ã§ããŸãZigZagãçè§£ããŠãããšäœ¿ãããªããããã€ã³ãžã±ãŒã¿ãŒã ãšãããã§ãããã
ãã ããä¿®æ£æ³¢ãŸã§ã¯ã«ãŠã³ããããªãã®ã§ããããŸã§è£å©çã«æŽ»çšããããšãããããã§ãã
ã«ãŠã³ããšãã£ããããã衚瀺ãããElliot-Fibonacciã
Elliot-Fibonacciã¯ããšãªãªããæ³¢åã«ãããæ³¢ã®ã«ãŠã³ãã«å ããŠããã£ããããããŒã«ã衚瀺ããŠãããã€ã³ãžã±ãŒã¿ãŒã§ãã
ãšãªãªããæ³¢åãšãã£ããããã®é¢ä¿æ§ã¯æ·±ãããšãªãªããæ³¢åã®ãæ³¢ã®çµç¹ãããæ³¢ã®æŒãç®ã»æ»ãããæšæž¬ããããã«ãã£ããããæ¯çã¯ããæŽ»çšãããŸãã
ãã®ã€ã³ãžã±ãŒã¿ãŒã§ã¯ãäŸ¡æ Œãã©ããŸã§äŒžã³ãããã®ã¿ãŒã²ããäŸ¡æ Œã衚瀺ãããã®ã§ãå©ç確å®äœçœ®ããã¬ã³ã転æç¹ã®ææ¡ãèªååã§ããã®ã§ãã
ãŸããã¬ã³ãã©ã€ã³ã衚瀺ãããã®ã§ããã¬ã³ãæ¹åãäžç®ã§çè§£ã§ããç¹ãç¹åŸŽã§ãã
ãã ãããã©ã¡ãŒã¿ãŒã®èšå®é ç®ãæååãããŠããã®ã§ãèšå®ã现ãã倿Žãããæ¹ã«ãšã£ãŠã¯äœ¿ãã¥ããã€ã³ãžã±ãŒã¿ãŒãšãªãã§ãããã
ãšãªãªããæ³¢åãšãã£ããããã®é¢ä¿æ§ã«ã€ããŠã¯ã以äžã®èšäºã§è©³ãã解説ããŠããã®ã§ãã²åèã«ããŠãã ããã
ãšãªãªããæ³¢åã®ã€ã³ãžã±ãŒã¿ãŒã®ã«ãŠã³ãã¯ä¿¡é Œã§ããã®ãïŒ
ã€ã³ãžã±ãŒã¿ãŒã䜿ã£ãŠæ³¢ã®ã«ãŠã³ããèªååããéã«æ°ã«ãªãã®ãããã€ã³ãžã±ãŒã¿ãŒãããã«ãŠã³ãã¯æ¬åœã«æ£ããã®ãïŒããšããç¹ã§ãããã
çµè«ãšããŠãã€ã³ãžã±ãŒã¿ãŒã®ã«ãŠã³ããæ£ãããªãå Žé¢ããã¡ãããããŸãã
æ£ããã€ã³ãžã±ãŒã¿ãŒã®ã«ãŠã³ããæ©èœããªãå žåçãªäŸãã以äžã®ãããªã¬ã³ãžçžå Žã§ãã
æ¬æ¥ã¯çްããæ³¢ãã«ãŠã³ãããå¿ èŠããªããã®ãããªã¬ã³ãžçžå Žã§ãã£ãŠããã€ã³ãžã±ãŒã¿ãŒã§ã¯ã«ãŠã³ãããããŠããŸãã®ã§ãã
ãã ãããã¬ã³ãçžå Žã ãšä»¥äžã®ããã«æ£ããã«ãŠã³ããããåŸåã«ãããŸãã
ãããã£ãŠãæ©èœããããçžå Žãšæ©èœãã¥ããçžå ŽãèŠæ¥µãã€ã€ããããŸã§åèçšåºŠã«æŽ»çšããããšããã£ããããé¢é£ã®ã€ã³ãžã±ãŒã¿ãŒã䜿ãããªãããã®ã³ãã§ãã
ãšãªãªããæ³¢åã®ã€ã³ãžã±ãŒã¿ãŒããã¬ãŒãã§æŽ»çšããæ¹æ³
ãšãªãªããæ³¢åã䜿ã£ããã¬ãŒãã§ã¯ã第3æ³¢ãçãããšããã€ã³ãã§ãã
第3æ³¢ã¯ãã¬ã³ãã®äžç€ã«çŸããã®ã§ä»ã®æ³¢ãšæ¯ã¹ãŠèŠã€ããããããã€5ã€ã®æšé²æ³¢ã®äžã§ãæãå€å¹ ãçããæ³¢ãªã®ã§ãã
ãããã£ãŠã第3æ³¢ãéäžçã«çãããšã§ãªã¹ã¯ãªã¯ãŒãã®é«ãååŒãå¯èœã«ãªããŸãã
ã€ã³ãžã±ãŒã¿ãŒã䜿ãã°ç¬¬3æ³¢ãçãããšã¯ãããé£ãããããŸããã
äžæãã¬ã³ãã®å Žåã¯ã第2æ³¢ãã«ãŠã³ããããæç¹ã§ã第2æ³¢ã®å®å€ãæåãäœçœ®ãšããŠè²·ããšã³ããªãŒãããŸãã
ãããŠããã£ããããã䜿ã£ãŠç¬¬3æ³¢ãã©ããŸã§äŒžã³ãã®ããäºæž¬ããŠããã®ã¬ãŒãã«å©ç確å®ç®æšãèšå®ããã ãã§ãã
ãŸãäžèšã®ãããªãã£ãŒãã ãšããããŸã§ç¶ããäžèœãã¬ã³ãã©ã€ã³ãäžã«ãã¬ã€ã¯ããŠããã®ã§ãã匷ãäžæãã¬ã³ãã·ã°ãã«ãšãªããŸãã
ãšãªãªããæ³¢åã䜿ã£ãŠFintokeiã«ææŠãã
Fintokeiãšã¯ãå人ãã¬ãŒããŒããããã¬ãŒããŒã«ææŠããå ŽãæäŸããŠãããããããã¡ãŒã ã§ãã
Fintokeiã§ã¯ããã¢ç°å¢ã䜿ã£ãŠä»®æ³è³éãéçšããŠãããæå€±çãæãã€ã€ãäžå®ä»¥äžã®å©ççãéæããããšã§ãããã¬ãŒããŒã«ãªãããšãã§ããŸãã
Fintokeiå ¬èªã®ãããã¬ãŒããŒã«ãªããšããã¢å£åº§ã«ãããååŒå©çé¡ãããšã«ããŒã¿æäŸæãšããŠå ±é ¬ããã¬ãŒããŒãžæ¯æãããŸãã
åæã®ååŒè³éãäŸ¡æ Œãç°ãªãè±å¯ãªãã©ã³ãFintokeiã§ã¯çšæãããŠãããæäœ1äžåå°ãããããã¬ãŒããŒãžã®ææŠãå§ããããã®ã§ãã
ä»å玹ä»ãããšãªãªããæ³¢åãæŽ»çšããååŒææ³ã¯ãFintokeiå ¬èªã®ãããã¬ãŒããŒã«ãªãããã«åœ¹ç«ã€ã§ãããã
ãŸããåç»ã®åŠç¿ã³ã³ãã³ããçšæãããŠããããããã°ã§ãã¬ãŒãã®åºç€ç¥èãåŠã¹ãããšãã¬ãŒããŒãžã®æè²ã«åãå ¥ããŠããç¹ãFintokeiã®åŒ·ã¿ã§ãã
ç¡æãã©ã€ã¢ã«ã宿œããŠããŸãã®ã§ããã²Fintokeiã®ãµãŒãã¹ãäœéšããŠã¿ãŠãã ããã
Fintokeiã«ã€ããŠã¯ã以äžã®èšäºã§è©³ãã解説ããŠããã®ã§ãã²åèã«ããŠãã ããã
â«ãããããã¡ãŒã Fintokeiãšã¯ïŒããããããçç±ãå§ãæ¹ã玹ä»ïŒ
ãŸãšã
ãã®èšäºã§ã¯ããšãªãªããæ³¢åã®åºæ¬æŠå¿µããã®ã«ãŠã³ãã®é£ããããããŠã€ã³ãžã±ãŒã¿ãŒã掻çšããããšã§ãã®åé¡ã解決ããæ¹æ³ã«ã€ããŠè©³ãã解説ããŸããã
ãšãªãªããæ³¢åã®ã«ãŠã³ããæ£ç¢ºã«è¡ãããã«ã¯ãã¬ãŒãã¹ãã«ãçµéšãå¿ èŠãšãªãã®ã§ããããã¬ãŒããŒã§ããªã¢ã«ã¿ã€ã ã§100ïŒ æ£ç¢ºã«è¡ãããšã¯å°é£ã§ãã
ããã§ã€ã³ãžã±ãŒã¿ãŒã掻çšãããšã100ïŒ æ£ãããšã¯èšããªããã®ã®ã«ãŠã³ãã®ç²ŸåºŠãé«ãããããšã³ããªãŒããšã°ãžããã®ã¿ã€ãã³ã°ãèŠæ¥µãããããªããŸãã
ä»å玹ä»ãã3ã€ã®ã€ã³ãžã±ãŒã¿ãŒã掻çšããèªåã®ãã¬ãŒãã¹ã¿ã€ã«ã«åã£ããã®ãéžã³ãŸãããã
æ £ããŠãããããã£ããããæ¯çãä»ã®ãã¯ãã«ã«åæææ³ãšçµã¿åãããŠãããé«åºŠãªãã¬ãŒãæŠç¥ãå®è·µããŠã¿ãŠãã ããã
